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Abstract —The buckling of a three-ply sandwich composite plate is studied in the context of finite
deformation incompressible nenlinear elasticity. As is the case of a noncomposite plate, buckled
configurations involving either barrelling or flexure are possible. However, the ordering of the
failure thrusts for certain composite configurations is more complicated than the ordering that
occurs in the noncomposite case. In particular, under suitable conditions, the thrusts at which
barrelling and flexural buckling modes occur can be interlaced. Furthermore, transitions in the
ordering of the ditferent failure modes may occur as the aspect riatio of the plate is varied.

1. INTRODUCTION

We consider the buckling of a composite plate composed of three stacked rectangular plics
with perfect interfacial bonding and subjected to a total end thrust 7. The end plies are
tdentical both in thickness and material. The geometry and loading of a particular plate
configuration is depicted in Fig. 1. The problem is studicd in the context of finite deformation
incompressible nonlincar clasticity. All three plics consist of nco-Hookean materials, so
that for given external dimensions £, [, and /, the composite construction is characterized
by two parameters: (i) /5, which is the ratio of the stiffness of the inner material to the outer
matenal, and (i) %, which is the volume fraction of the central ply within the complete
construction, The three special cases of f = 1, 2 = 0 ora = | correspond to a homogencous,
isotropic (noncomposite) plate which has been extensively studied by Sawyers and Rivlin
(1974, 1982). Our purpose is to consider the effect that composite construction has on
buckling instability failure. Sawyers and Rivlin (1974, 1982) have shown for the non-
composite case that buckling can occur in the (X, X,)-plane involving cither flexural or
barreiled mode shapes with an arbitrary integer number i of half-wavelengths, A diagram
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Fig. 1. Geometry of the composite plate under consideration. The buckled contigurations of interest
involve deformations in the (X', X.)-planc.
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of these failure modes. as they would occur in the composite construction under con-
sideration here. is presented in Fig. 2, where T% and T® (m =1.2.3....) denote the
corresponding failure thrusts. Of particular interest is the ordering of these failure thrusts.
Sawyers and Rivlin (1974, 1982) have shown that for the noncomposite cuase these thrusts
are always ordered as follows:

0<Ti <T < <Th<Th. < =T, - <Th <T) < <T¥<TH

()

Here T, is the value associated with an infinite number of wavelengths and can be identified
with a wrinkling instability.

For the composite construction we obtain some striking differences. Most notable is
that, under suitable conditions, the failure thrusts cease to be ordered as in (l). We
demonstrate that the following two results, neither of which occur in the noncomposite
case, may, under suitable conditions, take place for a three-ply composite construction : (i)
an interlacing of the thrusts at which barrelling and flexural buckling occur, and (ii) the
occurrence of the lowest—or critical—failure mode corresponding to a mode other than
m = | flexure. In fact the critical buckling instability is often found to be the wrinkling
instability corresponding to m = c. In such cases, for tixed values of £ and 2, the critical
instability is governed by the aspect ratio /,/1,. In fact, it is shown that there is a transition
between critical instabilitics which is aspect ratio dependent. Such a transition in critical
instabilitics for a noncomposite plate is of course not possible, since in such a case (1)
always holds. It is interesting to note however that a different but similar transition in
critical instabilities has been shown to exist by Simpson and Spector (1984) in certain types
of noncomposite column buckling. A thorough discussion of recent results concerning
buckling instabilities in homogeneous clastic solids has recently been given by Davies (1989),
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Fig. 2. Examples of the flexural and barrelling buckling modes, and failure thrusts, for m = 1,2 and
3. Higher order buckling modes involve a repetition of the basic m = 1 half-wavelength mode shape.
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along with rigorous results concerning the relation between buckling instabilities and energy
minimization for a problem involving a homogeneous compressible elastic solid. Finally. it
is to be noted that drastic changes in stability type for composite construction have recently
been demonstrated by Horgan and Pence (1989) for the void formation instability mech-
anism.

2. PROBLEM DESCRIPTION

We consider a thick rectangular plate occupying the region —/ < X, </ (i=1.2.3)
before the application of loads. The plate is constructed from three plies that are stacked
symmetrically as follows:

plyl: —-l<X,< —R.
ply2: —R< X, <R,
ply3 R < 4Y: < 12. (2)

Plies | and 3 are taken to consist of the same incompressible. isotropic, homogeneous elastic
material (material I). Ply 2 is also composed of an incompressible. isotropic. homogeneous
material (material 1I) which is in general different from material L.
Within each ply we define a deformation

x = x(X), (3
with deformation gradient tensor

F = dx/0X. (4
The requirement of material incompressibility is that

detF = 1. (3)
The Cauchy stress tensor is then given by

t = ~pl+2@Wel, + 1,0W/R1,) B =22 W/ol,) B, (6)

Here p is hydrostatic pressure, B = FF' is Green's deformation tensor, /,, /, are the first
and second invariants of B, and W is the strain energy density function of the material,

W'(1,,1,), inplies|and 3,
= w1, 1,), inply2.

The Piola-Kircholl stress tensor is then given by

S=F'r, (7)
and the equilibrium equations are

divS'T = 0. (8)

The plate is subjected to a thrust on each of the surfaces X| = +/,. We consider the
specific boundary conditions:
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S|3=S|3=0. on X’|=_+[|. (9)
xy= tpl,. on X, = %/, (10)
corresponding to a frictionless thrust with an overall stretch ratio of p. We shall regard
p > 0, rather than the thrust. as a prescribed constant. The physically interesting case of
compression corresponds to 0 < p < I.
The surfaces .Y, = £/, are assumed to be traction free so that the following boundary
conditions are required to hold :
S:;=53:=533=0. on k’z=_‘+‘_/2. (ll)
On the surfaces X; = +/;. the following boundary conditions are required to hold:
S_;|=SJ:=O. on X3=_‘t1‘;. (12)
Xy = il}, on X}= '_t[}, (13)
corresponding to a frictionless clamp. Problems of this type for homogencous (non-
composite) plates have been studied by Sawyers and Rivlin (1974, 1982).

In order to treat the composite three-ply laminate, the additional interface conditions
are required to hold:

S:,l,\_, = 85,l (i=123). X,= +R, (14)
X[y, = x|y X.=+R. (15)

Conditions (14) and (15) correspond to i case in which the plies are perfectly bonded across
the interfaces.

We shall henceforth restrict our attention to the case in which both material T and
material I are nco-Hookean with shear moduli 1 and g™, respectively. Thus

Wt =", =3)2, W% = "1, -3)/2, (16)

so that (6) yields:
t= —pl+uB, j=LIL (17)
To within an arbitrary displacement in the X,-direction, there is exactly one pure

homogeneous deformation solution to the foregoing boundary value problem. The under-
lying deformation must be given by

X, = pX,,
x2=p Xy,
Xy = 4‘/_\, (18)

in order to satisfy (10), (13) and (5). Thus the principal stretches 4, 4., 4, are given by

Ay =p, Ay=p~ ' iy = 1. The material deformation tensor F and Green's deformation

tensor B arc in this case given by
F=diag(p.p '.1). B=diag(p’,p 1) (19)

Both the Cauchy stress tensor (17) and the Piola~KirchofT stress tensor (7) are constant
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in each ply so that (8) is automatically satisfied. Now the conditions (11); and (14),.: in
conjunction with (17), (7), (19) give

p=upi=p¥ j=LIL (20)
Therefore
pi—p-?
=y 0 =V, j=11I, 21
l—p~*
and
p—p"
S = 0 =S, j=LIL (22)
l—p~?

Note that the remaining conditions (9). (11), (12) and (14) are automatically satisfied.
Let Q be the total load applied to each of the faces X'y = +/,. Then

0 =QU+Q™ @3
where Q' (j = L 1I) is the load applied to material j. Thus for the homogencous solution
o) = QU A, (24)
where A (j = 1,11} is the current arca of the surface to which Q' is applied,
AY =4, =R)yp ', A™ = 4RL,p-. (25)
Using (21) -(25), it is found that

(L= R

h _
" = R + (1, = R 2 (26)
R}.l“”
aw T 2
Q R“(Il)+(lz_R)“(l) Q‘ ( 7)
Q =4hL(p—p )R + (I, = R, (28)
Note that Q is monotone increasing in p from Q = —20 when p =0 to Q = 0 when

p = 0, with Q = 0 when p = 1. The thrust 7 on the end faces is then given by

T = —Q. (29)

3. BIFURCATION FROM THE HOMOGENEOUS SOLUTION
We now investigate the stability of the homogeneous deformation solution given above.
Following Sawyers and Rivlin (1974, 1982), we shall restrict our attention to the case where
buckling takes place in the (X, X,)-plane. To do so, we consider the fully finite deformation
Xy =pX +ed (X, X2),
.\.'2 =p- lX:+8!72(X|,X:),
.\.:J = Xj, (30)
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where 4,, i, are unknown functions which are independent of X'; by assumption. In this
section we shall use a superposed ~ to indicate quantities associated with the finite defor-
mation (30). Here ¢ is an order parameter which is introduced for the purposes of obtaining
a linearized problem governing bifurcation from the homogeneous deformation solution
(18). Finally. a superposed ~ will be used to indicate the O(g) difference between quantities
associated with X and quantities associated with this homogeneous deformation solution.
Thus, for example, the pressure field corresponding to (30) will be given by

A(X.e) = p" +ep(X1. X2, X3)+0(%), j=LIL €3]
and the Piola-Kirchoff stress tensor is given by
S(X.e) = S +£8(X,, X2, X))+ 0%, j=LIL (32)

The material deformation tensor associated with (30) is given by

p+eu,, €, 0
F=ea,, p '+eid,, 0, (33)
0 0 i
so that
det £ = [V +e(pis, +p~ ") +62 (22— 200,)]. (34)

1t is well known that the solution to the corresponding lincarized boundary value problem
locates the failure thrusts at which bifurcation occurs from a homogeneous solution of the
type (18) [sce Davies (1989) for a rigorous discussion of a problem involving a noncomposite
compressible elastic material]. An analysis of the linear problem will not reveal the details
of the post-buckling and morcover may underestimate the actual thrusts at which instability
occurs for the case of snap-buckling. These more difficult issues will not be treated in this
communication. Rather we shall in this paper concern ourselves with determining the failure
thrusts at which bifurcation takes place locally from the homogeneous solution (18). Thus
it follows from (5), (34) that the linearized problem governing local bifurcation obeys

p i, +iy,y =0. (35)
One obtains from (33), (35)
pi+e(2pi) ) elpiis +pld, ) 0
B =|e(piy, +p 'd,y) p i +e(2p'dy,) 0[+O0E),
0 0 1
p~ ey, —ed; O
F-'= —&ily pted; 0 +0(e?). (36)
0 0 |

Entering (17), (7) with (36) and using (20), (31), (32) it is found that

Si= —p ' p+u 2, +(p2—pDidya),
S =pp™ %, .+ dy)),

Sy = p Yy + 10

Si= —pp+2u4,,.
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533 = —p,
SIJ=SZJ=S3I=§32=0- 37

The equilibrium equation (8) in conjunction with (37) then yields the following system
of partial differential equations for the linearized problem:

—p P U, +p g 1 22) =0,
—ppa+u iy p a2+ i) =0, (j=LID)
-p3=0 (38)
Note that (38), is satisfied if and only if
ﬁ(XI'XZvXJ)‘—‘ﬁ(leXZ)- 39

In addition, boundary conditions (12) and (13) are satisfied automatically for the
linearized problem. Thus the linearized problem for local bifurcation from the homogeneous
solution (I18) is governed by field equations (38),, and (35) for functions (X, X,).
i,(X,. X3). p(X . X;) subjected to boundary conditions that follow from (9)-(11), (14) and
(15). Following Sawyers and Rivlin (1974, 1982), we may obtain solutions for this problem
in the form

_ —sin (D X) _ cos (bX)) _ cos(dX)
= / 4’3 N 3 = > ) = . 2/,
cos (‘X)) }L () sin (‘l’Xu)}U'(X') "= sin (‘PX.)}P(X') “0)
where the choice of @ = kn/l, (k= 1.2,3,..)and ¥ = (= 1/2)r/l, (= 1,2,3,...) results

in the satisfuction of boundary conditions obtained from lincarizing (9), (10). Let Q = @
or ¥ accordingly as one considers cither the upper or lower terms in (40). Thus Q = mn/21,
where m = 2k for the upper terms and m = 25— 1 for the lower terms. We shall refer to m
as the mode number since it determines the number of repeating half-wavelengths in the
X -direction of a basic deformation mode.

For both the upper and lower terms in (40) the field equations (38), ; and (35) become
ordinary differential cquations:

Ut—QU, —[(Qp ") /(u))P =0,
Us—=Q U, = [p/(uM]P =0, j=LII,
—p QU+ U5 =0. 40

Here the superscript ” denotes differentiation with respect to X',. The boundary and interface
conditions (11). (14)-(15) can also be written in terms of P(X,), U,(X,), U.(X5).

We define a new stretch ratio 4 = 4,/4, = p~2. Note that 4 > | when the ends are
compressed (0 < p < 1), and 4 < | when the ends are extended (p > 1). To solve (41), we
reduce this set of equations to a single ordinary differential equation for U, alone. This is
accomplished by first solving (41),, and (41), for U, and P in terms of derivatives of U,.
Upon using these results in (41), one obtains a single fourth order ordinary differential
equation for U,,

Uy —(1+ AU+ 4°Q'U, = 0. (42)

In a similar fashion the boundary conditions (11), (14), (15) give rise to:
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Q)Y UAX)+U%X,) =0

X I =+,
QP+ LA ULX) - LT (X)) = 0} on Xe =zt

Us(X;o) = Us(X:)

Us(X:-) = U':(X:»} on X:= xRk

KOG UAX ) + Us(X 5]
= u () Uy (X: )+ UNX: )]
W+ VA GR U - UL (X))
=p 2+ ARV, )~ UL (X, )]

on X, = +R, (43)

where X: = — Rimplies j = II, /= L and X, = Rimplies j = I. /= IL.
The general solution of (42) can be expressed as

U, = L (X)cosh (2, X,)+ L,(X;)sinh(Q,X;)+ M, (X;) cosh (2:X,)
+ M,(X,)sinh (Q.X,), (44)
where
(02

Q; O 22 122 Sl
Qi}-Q W+ A)E[(T+A7) =442 = il (45)

Here we have introduced the four step functions L,(X5), M, (X)) forn = | or 2 as

L, MV, X,e(—1l,, —R),
L (X)) =LY M(X)={M? X,e(—=R.R), (46)
Ly, M, X, e(R 1)

The boundary conditions (43) now give rise to a 12 x 12 lincar system for the 12 unknown
constants given by the Ls and Ms. This system shall be writien as
Jianbkn g =0, 47)

where

L= (1\’1'1”. ] [(’l)’ Lll”v L(’I)’ A{(II)' N{(’Z)' L(IZ)» L(,Z)’ M‘,J), 1\/1"”, L(IJ) L(»”)T (48)

and J is a 12 x 12 matrix described further in (51). Bifurcation takes place provided that a
nontrivial solution exists for (47). This in turn requires that

detJ = 0. (49)

Equation (49) can now be regarded as an equation for those 4s and hence those ps, at which
buckling can occur for a given value of the mode variable Q = mn/2i,.

It is convenient to study (49) by first introducing the following dimensionless par-
ameters

n=Qf =mnly2l,. B=pu"u" a= R/, (50)

Then J can be written as
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JH JIZ J!J
J= J:( J:: J:) - (51)
JJI JJZ J)J

where J,,, are 4 x 4 submatrices whose entries are functions of the parameters n, 8, 2 and
4. These submatrices are given in the Appendix. Thus (49) becomes an equation

Y(i.n. B,a) =0, (52)

relating the four dimensionless parameters describing the problem at hand: (a)
i =p Y= i,/i,—the ratio of the principal stretches at which buckling occurs, which
according to (28) is the load parameter, (b) n—which is the mode number of the buckled
configuration scaled with respect to the aspect ratio [,//,, (¢) B—which is the stiffness ratio
of the two composite materials comprising the construction, and (d) a—which is the volume
fraction of the central ply within the complete construction. These quantities are restricted
by their definitions to lie in the following intervals: 4 > 0,7 > 0,8 > 0,0 < « < 1. Although
n must take on discrete values determined by the aspect ratio /;//}, it can be treated as a
continuous variable for the purposes of analysis.

We shall call (52) the general buckling equation. We note that this problem ought to
reduce to the noncomposite case for the following two special cases:

(1) A = 1, since then material s identical to material 11, }
{53)

(it) either 2 = 0 or a = 1, since then only one phase is present.

4. TWO SPECIAL DEFORMATION TYPES: FLEXURE AND BARRELLING

For the noncomposite case, it is shown by Sawyers and Rivlin (1974, 1982) that two
deformation types are possible within the class of plane strain deformations (30) under
consideration here, the first of which is a flexural deformation and the second of which is
a barrclling deformation. Morcover, it is also shown that these two types exhaust all
posssible plane strain solutions. For the composite case, both of these deformation types
remain possible. However, analytical difficulties have so far prevented us from showing that
these two types exhaust all of the possible plane strain solutions. Nevertheless, in what
follows we limit our attention to these two deformation types.

A flexural deformation is one in which U, is an even function of X, so that U, is an
odd function of X, by virtue of (41),. This requires that

(‘ {(|I)' A!(zn, L';”, L(zll) - (M(;‘“. _1‘/1(2)), Lll")v __leh)’ A/!(zh _ lel) - 0' (54)

so that system (47) reduces from the 12 x 12 system to the following 6 x 6 system :

[ 2iC, -21S, AC, —AS, 0 0 7 [M"]
~AS, AC, =25, 2, 0 0 M
-C, S -C, S, C. C, Ly |
iSe —iCe S, =C, —iS. =S, | | 1w | =% G
—2iC, 21S, —AC, AS, 2ifC. ABC, | | M
| AS,  —AC, 25, —2C, —ABS. —28S,| | L]

where
C, =cosh(n). C,=cosh{in), C;=cosh(nx). C, = cosh(inz),
S\ =sinh(n). §; =sinh(in), S, =sinh(nx), S, =sinh(ina),
A = (i+1/4). (56)
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In place of equation (52) one then obtains a simpler flexural buckling equation found by
setting the determinant of the matrix in (55) equal to zero. We shall write this relation as:

Ye(in. B.2) = 0. (57)

A barrelling deformation is one in which U, is an odd function of X, and U, is an even
function of X,. This requires that

(Al‘ll).11':”.L‘|”.L‘3”) = (—M(x").ﬁ/[‘z"'. —L‘{”.L‘:})). Allll) — Llll) =0, (58)

which in turn gives that system (47) also reduces from a 12 x 12 system to a 6 x 6 system,

[ 2iC, -2iS, AC, —AS, 0 0 1 MM
~AS, AC. =25, 2C, 0 0 MY
~C, S, -C, S, =S, =5, | |vup
3S,  —iCi Si  —C:  iCs C, Lo | =0 (59)
~2C, S, -AC, AS, =28S, —ApS.| |M®
U AS.  —AC, 25, —2C, —ABC,  28C, ) L L@

where C,, Co, Cy. Cy. 51, 8., S0 8, and A are again as given in (56). In this casc the
associated barrelling buckling equation shall be written as:

Wo(ion. f.a) = 0. (60)

Both W and W, arc smooth functions of 4 5. f# and x2. For a given compaosite
construction, both ff and a are fixed. Then flexural and barrelling bifurcations are governed
by the n-4 relation between the mode number and the load parameter that follows from
(57) and (60). respectively.

Consider the flexural case. For a given triple (g, ff, 2) we then seck roots 4 to (57). It
is easily seen that

Wellin Boa) =0,

since the final two columns in the cocfficient matrix of (55) are then identical. Thus A =1
is always a solution to (57). However, since this corresponds to no end displacement and
hence zero thrust, it is not of interest to us and so will not be considered further.

The complicated nature of (57) gives rise to formidable analytical difficultics. Conse-
quently we have pursued a numerical investigation of this equation. Such an investigation
indicates for fixed n, f#, « that ‘¥ monotonically increases from Wy = — oo at A = 0 through
V. = 0at A = I to some maximum value. Then ¥ subsequently is found to monotonically
decrease, again passing through Wy = 0. Thus in addition to the root i = I, a second
root 4 > 1 exists for equation (57). Moreover since 2 > 1, these solutions only exist for
compressive loads. We shall denote this root by

A=y, B o). 61)
The barrelling case is similar, namely for all triples (f.n.2). 2 =1 is a root of (60). In
addition we find that there always exists another root 4 > 1 to the barrelling equation (60).
We shall denote this root by

A= Dy(n, fa). (62)

We have developed numerical routines, based on simple bisection, to determine the functions
D (n, f.2) and Dy (1. . 2).
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The failure stretch ratios are now defined as follows :

il = ®c(mnl 21, 8,2)

38, = Oy (mal:/21,. B, a)}' m=123 (63

Once these failure stretch ratios are found, the corresponding failure thrusts are found from
(28) and (29) using p = A~ "2, In particular, it is to be noted that the failure thrusts are
ordered the same as the failure stretch ratios.

To find the ordering of the flexure failure stretch ratios for fixed values of § and a, one
plots the sequence of points (mnl,y/21,, iF) using (63). The lowest value of if, determines
the critical mode number m for flexure as well as the critical flexure failure stretch ratio and
hence the critical flexure failure thrust. The critical mode number m for barrelling as well
as the critical barrelling failure stretch ratio and the critical barrelling failure thrust are
found similarly.

For all of the noncomposite cases (53), the numerical method consistently gives the
(n. 4) relation as found by Sawyers and Rivlin (1974, 1982) and displayed in Fig. 3. Notice
in this case that @ as a function of n is monotonically increasing from A =1 at 5 =0 to
4 =3.383...as n — o. Hence according to (63), the flexural failure thrusts are ordered as
follows:

0<Ti  <Th < <Th<TE,, <+ TY, (64)
where T, is found from (28) using the asymptotic value 4 = p~* = 3.383 ... Similarly for
the noncomposite case, Oy as a function of 5 is monotonically decreasing from 1 = o0 at
n=0tod=23383...asy— . Hence according to (63),:

TS Tl >TSS 7B > - aTh 5 0. (65)

Finally, since both @, and ®; have the same asymptote as n — o0, it follows that

7.4

‘I’B (nB.a)

n

Fig. 3. The functions @, (n. f. 2) and ®,(n. B. 2) for all (B, 1) pairs corresponding to the noncomposite
case given in (53). Here 4, > 3.383.



1820 T. J PencE and J. Song

T.=T%=T,. (66)

Physically T, gives rise to an instability which corresponds to a wrinkling failure. Com-
bining (64)-(66) gives (1).

5. FLEXURE AND BARRELLING RESULTS FOR COMPOSITE CONFIGURATIONS

We find that the orderings (64), (65) and (1) given by Sawyers and Rivlin (1974, 1982)
for noncomposite constructions. and confirmed in the previous section, will, for certain
composite constructions, cease to hold. The ordering of the failure thrusts is determined by
two factors: (i) the qualitative behavior of the functions ®g(n, 8, 2) and ®g(n. 8. 2) for fixed
(f. 2) as the mode parameter 5 is allowed to vary. and (it) the spacing of the sequence of »
values.

The qualitative behavior of the n-dependence can be characterized with respect to the
parameter pair (8, 2). The spacing of the values of # is then determined by the aspect ratio
,/1,. Thus the three parameters: ply stiffness ratio . central ply volume fraction x, and
aspect ratio /,//,, completely determine the ordering of the failure thrusts for the problem
at hand. Within this framework the present section is organized as follows. Beginning with
the function O (n. . 2) we document the possibilities for the qualitative behavior of the
y-dependence. Then for each distinct qualitative behavior so obtained we examine the
consequence of different possible spacings of . We then follow a similar programme for
the function g (y. f.2). In this fashion we uncover the possible new ordering for the fatfure
thrusts and corrclate these new orderings with the associated composite constructions by
means of the parameter pairs (1, 2) and the aspect ratio [,//,.

First of all, however, it will be expedient to demonstrate those qualitative behaviors
that hold regardless of the pair (ff, 2). For all values of (f,2) we find that &p(n, f.2) 15
initially monotonically increasing from the value 1 at yp = 0 and tends to an asymptotic value
as - o, Similarly, for all values of (#. 2) we find that dy(n, ff, 2) ts initially monotonically
decreasing from o at = 0 and tends o the same asymptotic value as 5 — ou. We shall
denote this common asymptotic value as:

A (fa) = ,}i{q Op(n, o) = ”hm Gy (. . 2). (67)

It ts computed numerically in what follows by taking a cut-ofl value for n in (67). We also
find that

Gy (n. . 2) < Py(n, f.2) (63)

for all finite n > 0. Thus (66) holds for all composite configurations where now
T, =T,(f,2). In additon (68) yiclds

TE < T8 m=1,2.3,.... (69)

In particular, (69) indicates that the critical flexure failure thrust is abways less than the
critical barrelling failure thrust. Thus the critical flexure failure thrust gives the first
bifurcation for all pairs (f,2) and all aspect ratios 1,/I, within the class of plane strain
bifurcations under consideration.

We now turn to consider those qualitative behaviors for the ny-dependence of the
functions ®g(n. B, 2) and Gy (x. f, 2) which result in new orderings of the failure thrusts. The
ordering (64) of flexural failure thrusts will continue to hold if ®g(n, . 2) is monotonically
increasing for all # > 0. Pairs (8, 2) which give rise to ®g(n. f. 2) having this property will
be said to belong to the set [T, For example, we find that (8.2) = (0.5, 0.5)eI'7 (Fig. 4).
Note in this case that 4, = 3.271 .. ..
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Fig. 4. The functions @ (1. §, 2) and ®g(n, . 2) for (f.2) = (0.5, 0.5). Here (B, 2)e T nTD with
A, =327 and n,,,, = 1.792.

However, we find for certain pairs (8, 2) that ®.(n, ff.a) is no longer monotonically
increasing in g over the whole domain n 2 0. In particular, it is sometimes found that
O,.(n, f.2) is monotonically increasing over a finite domain 0 € 7 < e = Man (1, @) but is
subscquently monotonically decreasing to 4, (8, 2) for 1 > f. (1, 2). Pairs (ff, a) which give
rise to this behavior will be said to belong to the set Y. For example, we find that (2.0,
0.5) eI}, in which case . = 1.977...and 4, = 3.439... (Fig. 5).

P, (nsa)
o
A.. ................ g T
N T
" P (npa)
L Y] \¥ ] " ':; £ Y ] LY} [ Y] 9

Fig. 5. The functions ®(n. 8.2) and ®g(n. B, 2) for (B.2) = (2.0, 0.5). Here (f.a)e ' A} with
i, % 3.439. 0.~ 1.977 and 5y = 1.392.

SAS 27:14-F
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Composite contigurations for which (f, x) e I’} give rise to flexure failure thrusts that
no longer obey (64). To determine the ordering in such a case we note for (8, 1) e I'F that
the eyquation

Ge(n.fox) =4, (.0 (70)

will have a unique finite root. which we shall denote by n,(8. x), and that this root will obey

'é'r(ﬁ- ZX) < ’Tm.xx(ﬁ’* 'I)«

Forexample. referring to Fig. 5, we note that 5(2.0,0.5) = 1.392.,. < 1.977... = f,.(2.0.
0.5). Recalling that the discrete values of the sequence of values of i is determined by /,/1,.
it follows that. for a given aspect ratio /3//,, one can then determine integers p, ¢ such that

prly 2 <np < (p+Unlyf24,.
qﬂ'l:/Zh < Honae < ((]+ 1)7:1:/21, (71)

[tisclear that 0 < p < g,
If p > 0 it follows that n/,/21, < n,so that TY is the critical flexure failure thrust. In

this event we may define the flexure failure thrust sequences

. ¥ Fy
so= (T T

— it ¥
b= T LT

' [

{provided p < ¢)

oy - )
Jdy = Q!‘,}‘Q..."’7(f‘

The ordering of the flexure failure thrusts will now consist of 4, followed by an interlacing
of uy with a reverse ordering of the sequence .

On the other hand if p = 0, then =nf,/20 2 5, Assume for the moment that the
incquality is strict. It then follows that T, is the eritical flexure failure thrust. In this event
the sequence o is empty and the ordering of the Hexure fatlure thrusts will consist of an
mterlacing of . with the reverse ordering of the sequence as. It is to be emphasized in this
interlacing that 77, will in this case ead the sequence of flexure failure thrusts.

In both cases p = O and p > 0 the thrust 7, is not an upper bound for the set of values
71 Recall now that both the Bexure failure thrusts and the barrelling fuilure thrusts cluster
around 77, . Henee it may be concluded that some of the barrelling failure thrusts will be
interluced with some of the flexure futlure thrusts.

Thus, if (f.oye UL, the Hexure fuilure thrusts are interlaced with the barrelling failure
thrusts regardivss of aspeet ratio 1yl The eritical flexure failure thrust will, depending on
the aspeet ratio 11 be cither the m =1 flexure failure or the nt = oo wrinkling failure. The
transition bevween the m = 1 flexure fuilure and the m = 0 wrinkling fuilure occurs at the
transition aspect ratio 1, 1, = 2n/n. At this transition aspect ratio TS = T% . Hence for a
UY plate which is sufficiently short in the direction of thrust [specifically 1, < Lnj(2n,)],
wrinkling is the critical flexural instability. However, for a U8 plate which is sufficiently long
in the direction of thrust [specifically 1, > 1n/(2n )], the critical flexural instability is the
=1 maode.

It is to be noted for (. x) e T, that there cxist infinitely many aspect ratios at which
a flexure failure thrust from u, will coincide with a flexure failure thrust from 4y, To see
this choose 4 in the interval 4, < 4 < ®p(y,.... f.2). There will exist two intersections of
the horizontal line corresponding 1o this value of 4 with the graph of ®.(n.f.2). One
intersection witl oceur in ;< < f,,, and the other will occur in > n,,,.. Denote these
intersection values of y by 5, and n,. respectively. The ratio n,/n, can be made to take on
any value greater than | by appropriately choosing 4 in this procedure. If this ratio is a
rational number it then follows that #./y, = r/s for infinitely many integer pairs r and s.
Choaose one such integer pair, for example the case when r and s are coprime. Then the
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aspect ratio [+, = 2n,/(sn) = 2n./(rn) will yield TF = TT. Moreover, this construction will
hold for each rational number greater than 1. We note that there is no possibility that a
single flexure failure thrust could correspond to three or more flexure failure modes m
whenever (B.2)eIF.

The regions I'F and I'F in the semi-infinite strip

M= {(B0[f200<2< 1} (72)

of possible (8. 2) parameter pairs have been determined by means of an extensive numerical
sampling procedure and are displayed in Fig. 6. Points to the right (left) of the vertical line
segment § = | correspond to cases in which the central ply is composed of a material which
is more (less) stiff than the material comprising the outer plies. Points above (below) the
horizontal line x = 1/2 correspond to cases in which the central ply comprises more (less)
than half the construction. A conspicuous feature of Fig. 6 is the presence of a region [,
corresponding to pairs (B, 2) which belong to neither [ nor I, The meaning of this region
will be discussed below. [n Fig. 6 the points (8.0)eI'T, (8, 1)e T and (1.x) e ¥ by virtue
of (53). However we find that pairs (8. %) very close to these values may in fact not belong
to I'F. For example, we find that (0.5, 0.99) e I'Y and (1.1, 0.5) e I'}.. The “threading™ of the
segment 8 = | through the “*pass’ created by regions I'} and I'f, near (f.2) = (1.0, 0.9) is
displayed in Fig. 7. The region boundaries in Figs 6 and 7 may shift as more refined
numerical algorithms are developed.

The presence of I'h so near the boundary 2 = | for 0 < f# < | indicates that if the
aspect ratio £,/ is sufliciently large then the addition of relatively thin and stiff outer layers
can suppress the low wavelength flexure modes enough to lead to the donunance of the
m = « wrinkling instability. Since cach pair (. 2) & I} gives risc to an aspect ratio depen-
dence upon the critical flexural instability, we display the value of i (ff, 2), which determines
the transition aspect ratio, for representative pairs (ff,a) e I} in Table 1.

We now turn to consider the buckling behavior of composile constructions cor-
responding to parameter pairs (f,a) e [, Each such pair (ff,2) gives rise to a function
&y (1. f1. 2) which contains both interpal maxima and internal minima as g varies from 0 to
« . The ordering of the flexure failure thrusts for composite configurations in which (ff,2)
It may in fact be quite complicated. First of all it is to be noted that (64) might still hold.

1.0

0.6+

0.4+ it

0.2+

0.0 T T T ¥ T md
0.0 1.0 2.0 3.0 4.0 5.0

[

Fig. 6. Flexure failure behavior as represented in the semi-infinite strip 0 < 2 = R, < 1,

0 < f = ¢ 1'". The region types for each shade are as displayed. The two points shown correspond

to the parameter pairs associated with Figs 4 and 5. Although it is not always obvious from this
diagram, the parameter pairs obeying (53) are in the region 7.
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0.91

0.904

.88

0.87+

s . —-
0.90 0.3 1.00 1.08 1.10
F)

Fig. 7. Magnifted view of Fig. 6 near (f,2) = (1.0, 0.9). The points on # = | are ensured to lic on
It by virtue of (53).

Specitically, if the number of internal maxima is finite and cqual to the number of internal
mintma, then the asymptotic value 4, will be approached from below and consequently
(64) will continuc to hold for sutliciently large aspect ratios £,//,. However, for each (ff. 2) €
Y itis also clear that there will exist certain aspect ratios such that (64) will not hold. In
particular, for cach (8, x) € [}, there will exist infinitely many aspect ratios such that certain
flexure failure thrusts will correspond to two distinet flexure modes m by the same argument
used for (ff.a)e I, Finally, the possibility of a single flexure failure thrust corresponding
to three or more flexure modes mr remains a possibility whenever (f, 2)e IF.

We now turn to consider the barrelling failure thrusts. The ordering (65) of barrelling
fatlure thrusts will continue to hold if ®y(y, f, %) is monotonically decreasing in y for all
n 2 0. Pairs (ff, 2) which give rise to ®y(n, fi. 2) having this property will be said to belong
to the set M. For example, (2.0, 0.5)e P (Fig. 5).

On the other hand if ®y(n, f,2) is found to be monotonically decreasing over an
imterval 0 €<y <y = Naa(f.2) and is subsequently monotonically increasing for
N> N (. 2), then we shall say that (8, 2) e T¥. For example, (0.5,0.5) e I8 (Fig. 4). Finally,

Table 1. Value of y, (1, 2), which determines the transition aspect ratio, for representating pairs (ff, x) €
[V For fy 1, < 2y, n. the critical instability is the m = | flexure mode, while for 1,4, > 2y, r the eritical
instability is the m = » wrinkhng mode

B=0.1{ 0.2 0.5 0.8 0.9 1.0 1.1 1.5 2 2.5 3 4 B=5
NN NN NN,
99 |0974|1.236]1.948|2810{3.602] 7/ | / | 7 | 7/ | 7 [ 7| 7| /
95 |0.593]0780] 1147 1692[2125] 7 | 7 | 7 | 7 [ 7 [ /7| 7 [ 7
9 |0.555][0711]1070|1.653]2466] 7 | 7 | 7/ | 7 | 7 | 7| 7 | /
3 71 7 1 7 1 7 | 7 ] 7 | 2264 1.831] 1.858] 2.102| 2.274] 2.798] /
7 (L U U U T 7 118621383 1.410] 1.439] 1.599] 1.726] 1.912
6 ;L 1 7 1 7 | /£ | 7 [1818] 1.333] 1.349] 1.395] 1.554] 1.698] 1.877
s T T 7 Tesi] 1347] 1.392] 1.497] 1.675] 1.965] 2.147
4 7 | 7 1 7 | 7| 7| 7 |2410] 1.483] 1.546] 1.729] 1.962] 2.322] 2.616
3 /1 7 1 7 1 7 [ 7 1 7 [3186] 1.763] 1.889] 2.196] 2.536] 3.060] 3.865
2 ' L 7 | 71 71 71 7 Tars3]2.465] 2.711] 3.228] 3.829] 4.784] 5.826
1 ! 1 7 1 7 1 71 71 711 7 |a857 5065 5903| 6.898] 7 | /
a0 | /7 [ 7 17 177 RINE AN, NN
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if (B.2) belongs to neither I'® nor I'® then we shall say that (8.x)e I',. Clearly (B.x)e I,
implies that ®g(7. §.2) has an internal maximum.

For (B.2)e '8, relation (65) will no longer hold. Specifically, T, can no longer be the
critical barrelling failure thrust. In fact, the critical barrelling failure thrust can be made to
correspond to any mode number m < x by, for example. taking an aspect ratio
1) = 2B, 2) (mn). Coincidence of two failure barrelling thrusts is also a possibility
whenever (8.2) €2, In fact for consecutive integers m and m+ 1, if TS = T2, | then this
common value of barrelling failure thrust must of necessity be the critical barrelling failure
thrust. Moreover. it can be shown that there exists a unique aspect ratio such that
T3 = T8, for any integer m. Finally, it is to be noted that interlacing of the flexural and
barrelling buckling loads will occur regardless of aspect ratio I,/ if (8. x)e 2.

If (B.x) e[S, then the ordering of the barrelling failure thrusts is complicated by the
precise placement of the internal maxima and minima of ®y(n. §, 2). In fact, phenomena
paralleling the possibilities outlined previously for I'f, pertain also to 'S,

The partitioning of IT into regions I'?, T2 and I}, is displayed in Fig. 8. Note that the
boundury of the region [} is at certain points quite close to the pairs (8, 1) corresponding
to the noncomposite case (53). The presence of I} so near the boundary x = 1 for > |
indicates that a plate which includes relatively thin and flexibie outer layers can be “tuned”
to any desired critical barrelling mode by appropriately selecting the aspect ratio {,//,. For
such a result to be of significant practical interest, however, it would scem that it would be
necessary to devise a method to suppress the preceding flexure modes.

Since the interfacing of the flexural and barrelling fatlure modes is an intriguing result,
it would be useful to further characterize this behavior with respect to f, x and /.1, For a
given pair (f, 2). interlacing can be made to oceur for at least one 1,/7; if for any value of
neither &y, fl.x) > £, or dy(n, fi. 2) < 4,.. Furthcrmore intertacing is ensured lor all £,/4,
if cither @y (n, .2} approaches 4, from above as n — o« or if Mgy, ff.x) approaches 4,
from below as p — 0. One or the other such asymptotic behaviors giving rise to interlacing
for alt £,/1, will occur if cither (f,2)e [, or (f.2) e [} In addition, an asymptotic behavior
that ensures intertacing could also occur it (B, 2) e I'), U TY ; however, for such points this
asymptotic behavior may be extremely sensitive to small changes in (f4, 1) and hence dithicult
to determine. Even so, it is interesting to note from Figs 6 and 8 that points {(fl.x)e
1w I comprise the major portion of the strip [T for both f# > 1 and § < 1. Thus, from

1.0

0.8

0.6
(0.5.0.5) (2.0.0.5)
[+ 4 . -

0.4+

¥ T ¥ T

2.0 3.0 4.0 5.0

g

Fig. 8. Barrelling failure behavior as represented in the semi-infinite strip 0 <2 = R, < 1,

0 < fi = g™ 4. The region types for each shade are as displayed. The two points shown correspond

to the parameter pairs associated with Figs 4 and 5. Although it is not always obvious from this
diagram, the purameter pairs obeying (53) are in the region 'Y
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this point of view, interlacing is not at all unusual both when the stiffer material comprises
the outer fayers (§ < 1, e.g. Fig. 4), and when the stiffer material comprises the central ply
(> 1.eg Fig 3.

It is also interesting to classify the points (8, 2} with respect to satisfaction of eqns (64)
and (63). There are three possibilities. First, it may be that both (64) and (65)—and thus
(1)—hold for all aspect ratios /, /,. In this case we shall say that (8.2)eZ,. For this to
occur the pair (f. 2) must belong to both I'Y and TB. Second. it may be that there is at least
one aspect ratio /. /, that will result in both (64) and (65) being violated. For this to occur
the pair (4. x) must belong to neither I'F nor 8. In this case we shall say that (B.x) e Z,.
Finally, it may be that for each aspect ratio /,//, either (64) or (65) holds, but that there is
also at least one aspect ratio /-//, for which one of these relations is violated. This will occur
for the remaining case in which (f. x) belongs to either I'T or T2, but not both. In this case
we shall say that (8, 2) € Z;. Summarizing then these definitions,

Eg = rf‘t’\r?.
Z.o=(huTm)n(@urs).
Ev=(IT(CBo)yu®Pa@yuri)). (73)

One can determine these regions on the basis of Figs 6 and 8, the result of which is given
in Fig. 9. This figure indicates that 2, is confined to a simply connected region containing
pairs (/. x) corresponding to the noncomposite case {33). Thus. in this sense, the composite
constructions under consideration must be “close’ to a noncompasite construction if (1) is 1o
hodd. Figure 9 also indicates that the region =, comprises the majority of the semi-infinite
strip I1. In particular, the (f, 2) pairs (0.5, 0.5) and (2.0, 0.5), associated with Figs 4 and 5
respectively, are cach a member of =40 The region =, on the other hand, comprises the
least arca within the semi-infinite strip Tl For pairs (8, x) € 2. both @ (. . ) and Dy (1, . 1)
display nonmonotone behavior as, for example, shown in Fig. 10 for the point (ff, 2) = (0.5,
0.8). Finally, it is to be noted from Fig. 9 that the (f, x) classification is far more sensitive
near 2 = | than it is near 2 = 0. This contirms our intuttion as to the effect that placement
of thin “stiffeners™ (or even “looseners™) would have in a much thicker homogencous plate ;

0.6 I3 EX
@
0.4
0.2
ESY
0.0 T T Y
0.0 1.0 2.0 3.0

8

ig. 9. The partiioning of the semi-infinite strip 0 < a = R/, < 1,0 < f = p""u" into the regions

. 2, and E,. The ordering (1} is ensured only for (f.2)¢=,. For {f.2)€Z,UE, the ordering

hich replaces (1) is dependent on the aspect ratio /,/,. Although it is not always obvious from
this diagram, the parameter pairs obeying (33) arc in the region =,

F
w
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n

Fig. 10. The function ®, (n, 1) and ®y{n. .2} for (f.2) = (0.5, 0.%). Here (B el Al A

maximum of the function @, (7. f.x) occurs at (7. 4) = £, = (1925, 2.030) and 4 mnimum of the

function occurs at (7. 4) = P, x (2811, 2,021 A single minimum in the function @, (. 20 oceurs
at{n, 4} = P, x (3197, 2.041).

Ll v A
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namely that the addition of thin plies on the external X, faces of the plate would have a
more pronounced effect on the buckling behavior than would the insertion of a single
double thickness ply on the plate’s midplanc. Thus it is found that burying a very thin ply
at the center of a plate will mask its effect upon altering the order of the failure thrusts.
More general issues reluted to the modification of buckling behavior by means of ply
placement are currently under investigation.,
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APPENDIX

Submatrices J.,, in (51):

Joa=dn=J,, =0,
AC,  -2i8, AC, =AS,
~ASy AC: -5, 2,
0 0 0 0
0 0 0 0

Jyo=
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0 0 0 0
0 0 0 0

o= 2C. 28, AC, AS,
AS. AC, 25, 2C,
[ -C. S, -C S
5 - iS.  —iC, S, -Gl
: ~2iC, 2iS, =AC, AS,
| AS,  -AC, 25, -2,
e -5, c, -5,
g | s e -5, c,
i WiC, —2PiS. PAC, —PAS,
| —BAS, BAC, —=2BS, 26C.
[ -C, -5, -C, _
g | TESe i s -G
VT S2piC, =2piS, ~PAC, —PAS,
| —PAS, —PAC, =-28S, =—24C,
[ C. S, C S,
oo |38 e s
2C, S, AC. AS,
LAS. AC, 25, 2,

where
C, =cosh(n). C, =cosh(ag), C, =cosh(yx)., C, =cosh(in),
S, =sinh(y), S, =sinh(4n), S, =sinh(yx), S, = sinh(inx),

A = (A+1/4).



