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Abstract-The buckling of a three-ply sand\\ich composite plate is studied in the contellt of finite
deformation incompressible nonlinear elasticity. As is the case of a noncomposite plate. buckled
configurations involving either barrelling or Rellure arc possible. However. the ordering of the
failure thrusts for certain composite conligurations is more complicated than the ordering that
occurs in the noncomposite case. In particular. under suitable conditions. the thrusts at which
barrelling and Rellural buckling modes occur can he interlaced. Furthermore. transitions in the
ordering of the ditferent failure modes may occur as the aspect ratio of the plate is varied.

1. INTROOUCTION

We consider the buckling of a composite plate composed of three stacked rectangular plies
with perfect interfacial bonding and subjected to a total end thrust T. The end plies arc
identical both in thickness and material. The geometry and loading of a particular plate
configuration is depicted in Fig. I. The problem is studied in the context oflinite deformation
incompressible nonlinear elasticity. All three plies consist of neo-Hookean materials, so
that for given external dimensions II' I! and I .. the composite construction is characteril.ed
by two parameters: (i) II, which is the ratio of the stifl'ness of the inner material to the outer
material, and (ii) :to which is the volume fraction of the central ply within the complete
construction. The three spel:ial cases of II = I,:t = 0 or:t = I correspond to a homogeneous,
isotropic (noncomposite) pl~lte which has been extensively studied by Sawyers and Rivlin
(1974, 19lQ). Our purpose is to consider the efl'ect that composite construction has on
huckling instability failure. Suwyers and Rivlin (1974, 1982) huve shown for the non­
composite cuse that buckling can occur in the (XI' Xz)-plune involving either tlexural or
barrellcd mode shapcs with an arbitrary integcr numbcr 11/ ofh~l1r-wuvclcngths. A diagram
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Fig. I. Geometry of the composite plate under consideration. The buckled conligurations of interest
involve derormations in the (X,. X ,)-plane.

IXO<)



ISIIl T. J P!:~CE and 1. S<.J"G

of the:se failure modes. as they would occur in the composite construction under con­
sideration here. is presented in Fig. 2. where T~ and T~ (m = 1.2.3.... ) denote the:
corresponding failure: th rusts. Of particular interest is the ordering of the:se failure thrusts.
Sawye:rs and Ri\lin (197.t. 1982) have shown that for the noncomposite case these thrusts
are always ordered as follows:

o< n < T~ < ... < T~ < T~ _ I < ... -+ T.c ~ ... < T~ _ I < T~ < ... < n < n.
( I )

Here T",- is the value associated with an infinite number ofwavelengths and can be identified
with a wrinkling instability.

For the composite construction we obtain some striking differences. Most notable is
that. under suitable conditions. the failure thrusts cease to be ordered as in (I). We
demonstrate that the following two results. neither of which occur in the noncomposite
case. may. under suitable conditions. take place for a three-ply composite construction: (i)
an interlacing of the thrusts at which barrelling and flexural buckling occur. and (ii) the
occurrence of the lowest-or critical-failure mode corresponding to a mode other than
I1l = I flexure. In fact the critical buckling instability is orten found to be the wrinkling
instability corresponding to I1l =X:. In such cases. for fixed values of 11 and 1:. the critical
instability is governed by the aspect ratio I!/I,. In fact. it is shown that there is a transition
between critical instabilities which is aspect ratio dependent. Such a transition in critical
instabilities for a noncomposite plate is of course not possible. since in such a case (I)
always holds. It is interesting to note however that a dil1crent but similar transition in
critical instabilities has been shown to exist by Simpson and Spector (1984) in certain types
of noncomposite colul1lJ/ buckling. A thorough discussion of recent results concerning
buckling instabilities in !I0I1lo.C}('J/('OIiS clastic solids has recently been given by Davies (1989).

Fig. 2. Examples of the flexural and barrelling buckling modes. and f;lilure thrusts. for m = 1.2 and
J. Higher ordc-r buckling modes involve a repetition of the basic m = I half-wavelength mode shape.
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along with rigorous results concerning the relation between buckling instabilities and energy
minimization for a problem involving a homogeneous compressible elastic solid. Finally. it
is to be noted that drastic changes in stability type for composite construction have recently
been demonstrated by Horgan and Pence (1989) for the void formation instability mech­
anism.

2. PROBLEM DESCRIPTION

We consider a thick rectangular plate occupying the region -I, ~ X, ~ I, (i = l.~. 3)

before the application of loads. The plate is constructed from three plies that are stacked
symmetrically as follows:

plyl: -/~<X~<-R.

ply 2:

ply 3:

-R < X2 < R.

R < X~ < I~. (2)

Plies I and 3 are taken to consist of the same incompressible. isotropic. homogeneous clastic
materi.1I (materiall). Ply :2 is also composed of an incompressible. isotropic. homogeneous
material (material II) which is in general ditTerent from material I.

Within each ply we define a deformation

x = x(x).

with deformation gradient tensor

F = (Ix/ax.

The requirement of material incompressibility is that

det F = I.

The Cauchy stress tensor is then given by

(3)

(4)

(5)

(6)

Here p is hydrostatic pressure. B = FFT is Green's deformation tensor. fl. f 2 are the first
and second inv.triants of B. and W is the strain energy density function of the material.

_ {W1(ll>fJ . in plies I and 3.
W- II ..,

W (II> f 2 ). 10 ply _.

The Piola-KircholT stress tensor is then given by

and the equilibrium equations are

divST = O.

(7)

(8)

The plate is subjected to a thrust on each of the surfaces XI = tIl' We consider the
specific boundary conditions:



181~ T. J. PE~CE ..Ind J. So1'G

(9)

( 10)

corresponding to a frictionless thrust with an overall stretch ratio of p. We shall regard
p > O. rather than the thrust. as a prescribed constant. The physically interesting case of
compression corresponds to 0 < p < I.

The surfaces X~ = ± I~ are assumed to be traction free so that the following boundary
conditions are required to hold:

On the surfaces Xl = ±/l . the following boundary conditions are required to hold:

SII = 51: = O. on Xl = ±lj,

( II )

(12)

( 13)

corresponding to a frictionless clamp. Problems of this type for homogeneous (non­
composite) plates have been studied by Sawyers and Rivlin (1974.1982).

In order to treat the composite three-ply laminate. the additional interface conditions
arc required to hold:

5:.11, = S:.I" (i = 1.2.3). X: = ±R, ( 14)

x: = ± R. ( 15)

Conditions (14) and (15) correspond to a case in which the plies arc perfectly bonded across
the interfaces.

We shall henceforth restrict our attention to the case in which both material I and
material II arc neo-Hookean with shear moduli 11(11 and /1(111. respectively. Thus

( 16)

so that (6) yields:

( 17)

To within an arbitrary displacement in the X:-direction. there is exactly one pure
homogeneous deformation solution to the foregoing boundary value problem. The under­
lying deformation must bc givcn by

( 18)

in ordcr to satisfy (10). (13) and (5). Thus thc principal stretches )." i.:. i' l arc givcn by
i' l = p. ).~ = p.l. i' l = I. Thc matcrial dcformation tensor F and Grecn's deformation
tensor 8 arc in this casc given by

F = diag (p. pl. I). 8 = diag (p:. p -:. I). ( 19)

80th the Cauchy stress tensor (17) and the Piola-K irchofT strcss tcnsor (1) arc constant
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in each ply so that (8) is automatically satisfied. Now the conditions (11h and (14),_~ in
conjunction with (17). (7), (19) give

Therefore

(20)

,] == rl}). j = I, II,

I-p-·

(21)

and

(22)

Note that the remaining conditions (9). (II). (12) and (14) are automatically satisfied.
Let Q be the total load applied to each of the faces XI = ±'I' Then

(23)

where QIIl (j:: 1.11) is the load applied to materialj. Thus for the homogeneous solution

(24)

where A(/) (j :: I. II) is the current area of the surface to which QUI is applied,

(25)

Using (21) -(25). it is found that

(26)

(27)

(28)

Note that Q is monotone increasing in p from Q = -:Xl when p = 0 to Q = 00 when
p = ::1:). with Q :: 0 when p = I. The thrust T on the end faces is then given by

T= -Q. (29)

3. BIFURCATION FROM TIlE HOMOGE:-iEOUS SOLUTION

We now investigate the stability of the homogeneous deformation solution given above.
Following Sawyers and Rivlin (1974, 1982). we shall restrict our attention to the case where
buckling takes place in the (XI- X2)-plane. To do so. we consider the fully finite deformation

.i l = pX I +I:UI(X1, X 2) •

.i 2 = p - I X 2 +ui2(X Io X 2),

(30)
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where U" Uz are unknown functions which are independent of X J by assumption. [n this
section we shaH use a superposed A to indicate quantities associated with the finite defor­
mation (30). Here e is an order parameter which is introduced for the purposes of obtaining
a linearized problem governing bifurcation from the homogeneous deformation solution
(18). FinaHy. a superposed - will be used to indicate the O(e) difference between quantities
associated with .i and quantities associated with this homogeneous deformation solution.
Thus, for example, the pressure field corresponding to (30) will be given by

(31 )

and the Piola-Kirchoff stress tensor is given by

The material deformation tensor associated with (30) is given by

(32)

eii 1.1

p.1 +f.Uu

o
(33)

so that

(34)

It is weH known that the solution to the corresponding linearized boundary value problem
locates the failure thrusts at which bifurcation occurs from a homogeneous solution of the
type (18) [sec Davies (1989) for a rigorous discussion ofa problem involving a noncomposite
compressible clastic material]. An analysis of the linear problem will not reveal the details
of the post-buckling and moreover may underestimate the actual thrusts at which instability
occurs for the case of snap-buckling. These more dillicult issues will not be treated in this
communication. Rather we shall in this paper concern ourselves with determining the failure
thrusts at which bifurcation takes place locally from the homogeneous solution (18). Thus
it follows from (5), (34) that the linearized problem governing local bifurcation obeys

(35)

One obtains from (33), (35)

e(pii2• 1+p. IUI.2)

p- 2+ e(2p-luu)
o

(36)

Entering (17), (7) with (36) and using (20). (31). (32) it is found that

SII = -p-lp+/P'[2ul,l+(p2_ p -2)UU].

SI2 = Illil(p-2UI.2+U2.1),

S21 = 1l<JI(p - 2U2.1+ 1/1.2)'

S22 = -pp+21l<J)ii2. 2•
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S33 = -p,

SI) = S~) = 5)\ = Sn = O.

1815

(37)

The equilibrium equation (8) in conjunction with (37) then yields the following system
of partial differential equations for the linearized problem:

- p - IP.I + ,uf))(2ii 1.11 + P~iiZ.21 + ii I,Zz) = 0,

-pp.~+,ufJI(21iz.~=+p-ziil.12+iiz .• tl = o. (j = I,ll)

- P.) = O. (38)

Note that (38) J is satisfied if and only if

(39)

In addition, boundary conditions (12) and (13) are satisfied automatically for the
linearized problem. Thus the linearized problem for local bifurcation from the homogeneous
solution (18) is governed by field equations (38)u and (35) for functions iil(XI'X~),

li~(XI' X~), p(X I • X z) subjected to boundary conditions that follow from (9)-( II). (14) and
(15). Following Sawyers and Rivlin (1974, 1982), we may obtain solutions for this problem
in the form

where theehoiceof<(> = knlt l (k = 1,2,3, ... ) and 'I' = (j-1/2)nlt l (j = 1.2,3, ...) results
in the satisfaction of boundary conditions obtained from linearizing (9), (10). Let !l = <(>
or 'I' accordingly as one considers either the upper or lower terms in (40). Thus!l = mn/21 1•

where m = 2k for the upper terms and m = 2j - I for the lower terms. We shall refer to m
as the mode number since it determines the number of repeating half-wavelengths in the
X I-direction of a basic deformation mode.

For both the upper and lower terms in (40) the field equations (38) •.2 and (35) become
ordinary differential equations:

V'; -!lzV, -[(!lp-')/(/I(J)]P = o.
v'l-n~V~-[pl(/l(j)]P'=O, j=I.II,

-P-~!lVI+V2=0. (41 )

Here the superscript' denotes differentiation with respect to X 2. The boundary and interface
conditions (II), (14)-( IS) can also be written in terms of P(X2), V\(Xz), Vz(Xz).

We define a new stretch ratio ). = ).zlA. 1 = p-z. Note that ;. > I when the ends are
compressed (0 < p < I). and;. < I when the ends are extended (p > I). To solve (41), we
reduce this set of equations to a single ordinary differential equation for V z alone. This is
accomplished by first solving (41)1' and (41h for VI and P in terms of derivatives of V z.
Upon using these results in (41 h one obtains a single fourth order ordinary differential
equation for V z•

(42)

In a similar fashion the boundary conditions (II), (14), (15) give rise to:
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,d"[vnfU~(X~.) + U'2(X~,)]

= tl1j
)[(l.n) ~ U~ (X~~)+ U;(X~)]

ti' °[(2 + 1/;.l)(l.n)~ U'l(X~.) - U~' (X~.)]

=tl\i1[(2 + 1/;.~)().n)~U2(X~ ) - U~'(Xl )]

on Xl = ±R, (43)

where X~ = - R implies} = II, j = [and X~ = R implies} = l, j = It
The general solution of (42) can be expressed as

U ~ = L I (X~) cosh (0 I Xl) + L~(Xl) sinh (0 I X z) + M I (Xl) cosh (OlX~)

+Ml(Xl)sinh(OlXl ), (44)

where

(45)

Here we have introduced the four step functions Ln(X l ), Mn(X~) for II = I or 2 as

(46)

The bound:lry conditions (43) now give rise to a 12 x 12 linear system for the 12 unknown
constants given by the Ls and Ms. This system shall be written as

(47)

where

and J is a 12 x 12 matrix described further in (51). Bifurcation takes place provided that a
nontrivial solution exists for (47). This in turn requires that

det J = O. (49)

Equation (49) can now be regarded as an equation for those ;,s and hence those ps, at which
buckling can occur for a given value of the mode variable 0 = ",ref?/,.

It is convenient to study (49) by first introducing the following dimensionless par­
amctcrs

(50)

Then J can be written as
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(51)

where J"", are 4 x 4 submatrices whose entries are functions of the parameters ". P. a: and
L These submatrices are given in the Appendix. Thus (49) becomes an equation

'P()'.". P. IX) = O. (52)

relating the four dimensionless parameters describing the problem at hand: (a)
;. = fJ - 2 = ;.2;;'1- the ratio of the principal stretches at which buckling occurs. which
according to (28) is the load parameter, (b) ,,-which is the mode number of the buckled
configuration scaled with respect to the aspect ratio 12/1" (c) p-which is the stiffness ratio
of the two composite materials comprising the construction. and (d) IX-which is the t'olume
fraction of the central ply within the complete construction. These quantities are restricted
by their definitions to lie in the following intervals: A. > 0." > 0, P> o. 0 ~ a: ~ I. Although
" must take on discrete values determined by the aspect ratio Iz/l" it can be treated as a
continuous variable for the purposes of analysis.

We shall call (52) the general huckling equation. We note that this problem ought to
reduce to the noncomposite case for the following two special cases:

(i) P= I. since then material f is identical to m.lterial II. }
(53)

(ii) either IX = 0 or IX = I. since then only one phase is present.

4. TWO SPEnAL On'ORMATION TYPES: rLEXlJRE AND nARRELLING

For the noncomposite case. it is shown by Sawyers and Rivlin (1974, 1982) that two
deformation types arc possible within the class of plane strain deformations (30) under
consideration here. the first of whieh is a l1exural deformation and the second of which is
a barrelling deformation. Moreover, it is also shown that these two types exhaust all
posssible plane strain solutions. For the composite case. both of these deformation types
remain possible. However, analytical dimeulties have so far prevented us from showing that
these two types exhaust all of the possible plane strain solutions. Nevertheless. in what
follows we limit our attention to these two deformation types.

Ajlexural deformation is one in which Vz is an even function of Xz so that VI is an
odd function of Xz by virtue of (41»). This requires that

so that system (47) reduces from the 12 x 12 system to the following 6 x 6 system:

2;.Cz - 2).Sz AC I -AS, 0 0 M\1l

-ASz ACz -2S1 2C I 0 0 M~1l

-C4 S4 -C) S) C4 C) LV)

;'s4 -;,C4 S) -C3 -)'s4 -53 L(I) = °6K" (55)
2

-2;'C4 2),S4 -AC3 AS3 UPC4 APC3
M\Z)

A54 -AC4 25J -2C] -A{JS4 -2PS3 L\Z)

where

C I =cosh (,,), Cz = cosh ().,,), C3 =cosh ("IX), C4 = cosh ().,,:x) ,

51 = sinh (,,). Sz = sinh ().,,). 5 J = sinh ("IX), S4 = sinh ()."IX) ,

A = ().+ 1/;.). (56)
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In place of equation (51) one then obtains a simpler jit!xura/ buckling t!quation found by
setting the determinant of the matrix in (55) equal to zero. We shall write this relation as:

(57)

A barrelling deformation is one in which U: is an odd function of X: and U, is an even
function of X:. This requires that

which in turn gives that system (47) also reduces from a 12 x 12 system to a 6 x 6 system.

2).C: -US: AC, -AS, 0 0 Ml
l
ll

-AS: AC: -2S 1 2C I 0 0 M~ll

-C~ S~ -CJ SJ -S~ -Sl L\II

).s~ -).C SJ -C) ;.C~ C LIZ
Il = Obx I. (59)

-2).C~ 2).S~ -AC) AS) -2).pS~ -AfiS) M~:)

AS~ -AC 2S, -2C1 -APC 2fiC, L~Z)

where Ct. C:. C,. C4 • SI. Sz. S" 54 and A arc again as given in (56). In this case the
associated harrelling bllck/illg e'i"ation shall be written as;

lfIn ().. 1'/. fl.~) = o. (60)

Roth 'PI' and 'Pu arc smooth functions of X '1. f/ and :x. For a given composite
construction. both fl and IX are fixed. Then flexural and barrelling bifurcations are governed
by the 1'/ -), relation between the mode number and the load parameter that follows from
(57) and (60). respectively.

Consider the flexural case. For a given triple ('1. fl.~) we then seek roots;' to (57). It
is easily seen that

since the final two columns in the coefficient matrix of (55) are then identical. Thus ). = I
is always a solution to (57). However. since this corresponds to no end displacement and
hence zero thrust. it is not of interest to us and so will not be considered further.

The complicated nature of (57) gives rise to formidable analytic.tl dilliculties. Conse­
quently we have pursued a numerical investigation of this equation. Such an investigation
indicates for fixed t/. fl. ~ that 'PI' monotonically increases from lfIl' = - ex, at;. = 0 through
lfIF = 0 at ). = I to some maximum value. Then 'PI' subsequently is found to monotonically
decrease. again passing through 'PI' = O. Thus in addition to the root ). = I. a second
root ). > ) exists for equation (57). Moreover since ). > 1. these solutions only exist for
compressive loads. We shall denote this root by

(61 )

The barrelling case is similar. namely for all triples (fl. 1'/. :x). ;. = I is a root of (60). In
addition we find that there always exists another root ;. > 1 to the barrelling equation (60).
We shall denote this root by

(62)

We have developed numerical routines. based on simple bisection. to determine the functions
<1>1'(1'/. fi.~) and <1>fl('" fi. ~).
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The failure stretch ratios are now defined as follows:

;,~ = (J>F(m1t/ 2/2/ 1• fJ .'%)}
• B _ '" ( I /21 R ) • m = 1, 2. 3•....

A.m - 'VB m1t 2 '.1'.'%

1819

(63)

Once these failure stretch ratios are found, the corresponding failure thrusts are found from
(28) and (29) using p = ;. - 1/2, In particular. it is to be noted that the failure thrusts are
ordered the same as the failure stretch ratios.

To find the ordering of the flexure failure stretch ratios for fixed values of fJ and oc. one
plots the sequence of points (m1t/z/2/,. ;.~) using (63). The lowest value of A.~ determines
the critical mode number m for flexure as well as the critical flexure failure stretch ratio and
hence the critical flexure failure thrust. The critical mode number m for barrelling as well
as the critical barrelling failure stretch ratio and the critical barrelling failure thrust are
found similarly.

For all of the noncomposite cases (53). the numerical method consistently gives the
(". ;.) relation as found by Sawyers and Rivlin (1974. 1982) and displayed in Fig. 3. Notice
in this case that (J>F as a function of" is monotonically increasing from A. = I at " = 0 to
;. = 3.383 ... as" -+ 00. Hence according to (63), the flexural failure thrusts are ordered as
follows:

o < n < T~ < ... < T~ < T~ .. I < ... -+ T~. (64)

where T~, is found from (28) using the asymptotic value A. = p- 2 = 3.383 ... Similarly for
the noncomposite case. (lin as a function of" is monotonically decreasing from A. = 00 at
" = 0 to A. = 3.383 ... as '1 -+ 00. Hence according to (63h:

n > n > ... > T: > T: .. I > ... -+ T~, > O.

Finally. since both $ ... and (II" have the same asymptote as " -+ 00. it follows that

(65)

~-
tilB ( ".Il.a )

--- ------- - -- --~-:=:-:a--------

tilF ( ".Il.a )

... IA u u
fJ

Fig. 3. The functions «1>.('1. fl.:x) and «1>.('1. fl.:xl for all (fl.:x) pairs corresponding to the noncomposite
case given in (53). Here;' I' == 3.383.
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T~ = T~ == T~. (66)

Physically T ~ gives rise to an instability which corresponds to a wrinkling failure. Com­
bining (64)-(66) gives (11.

5. FLEXURE AND BARRELLING RESULTS FOR COMPOSITE CONFIGURATIONS

We find that the orderings (64). (65) and (I) given by Sawyers and Rivlin (1974. 1982)
for noncomposite constructions. and confirmed in the previous section. will. for certain
composite constructions. cease to hold. The ordering of the failure thrusts is determined by
two factors: (i) the qualitative behavior of the functions <l>F('1. fl.:x) and <1>8('1. fl.:x) for fixed
(p.:x) as the mode parameter '1 is allowed to vary. and (ii) the spacing of the sequence of '1
values.

The qualitative behavior of the 'I-dependence can be characterized with respect to the
parameter pair (fl. :x). The spacing of the values of '1 is then determined by the aspect ratio
I!/I" Thus the three parameters: ply stiffness ratio fl. central ply volume fraction :x. and
aspect ratio I!/I,. completely determine the ordering of the failure thrusts for the problem
at hand. Within this framework the present section is organized as follows. Beginning with
the function <1>1'(r/. fl.:x) we document the possibilities for the qualitative behavior of the
r/-dependenl:e. Then for each distinl:t qualitative behavior so obtained we examine the
I:onsequenee of different possible spacings of '1. We then follow a similar programme for
the function «l,,(t/.ll.:x). In this fashion we uncover the possible new ordering for the failure
thrusts and correlate these new orderings with the associated composite constructions by
means of the parameter pairs (fl.:x) and the aspect ratio I!/I"

First of all. however. it will be expedient to demonstrate those qualitative behaviors
that hold regardless of the pair (fl. :x). For all values of (fI,:x) we lind that <1>..(I/.ll.:x) is
initially monotonil:ally increasing from the value I at r/ = (J and tends to an asymptotic value
as rr -- :0. Similarly. for all values of (ff.:x) we find that <ll,,(I/./f,:X) is initially monotonically
decreasing from 'Y.J at 1/ = (J and tends to the same asymptotic value as r/-+ <f.J. We shall
denote this COlllmon asymptotic val ue as:

(67)

It is I:omputed numerically in what follows by taking a wt-olr value for '1 in (67). We also
find that

(68)

for all finite t{ > O. Thus (66) holds for all composite configurations where now
T, = T, (ff.:x). In addition (68) yields

T~ < T::.. fIl = 1.2.3..... (69)

In particular. (69) indicates that the critical flexllre failllre thrust is abm)'s less than the
critical barrelling failllre thrllst. Thlls the critical flexllre failllre thrust gives the first
bijilrcation for all pairs (P.:x) and all aspect ratios I!/II within the class of plane strain
bifllrcations IInder consideration.

We now turn to consider those qualitative behaviors for the I/-dependence of the
functions <J>dl/. fl.:x) and <1>8 (tl. P.:x) which result in new orderings of the failure thrusts. The
ordering (64) of flexural failure thrusts will continue to hold if <1>F(I/. fl. (X) is monotonically
increasing for all r/ ;:;:: O. Pairs (fl.:x) which give rise to <f>F(t/. fl.:x) having this property will
be said to belong to the set f;. For example. we find that (fl. (X) = (0.5.0.5) E f; (Fig. 4).
Note in this case that ;., = J.271 ....
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A-

... ,.. U M U ...

If""" "

Fig. 4. Thc functions 111.<". P.:I) and 11I.("./I.:l) for (/I.:l) = (0.5. 0.5). Hcre ({I.:l) E n n r~ with
A, ~ 3.211 and tlmo. ~ 1.19:!.

However. we find for certain pairs (fl. et) that <1l1'('T./1. et) is no longer monotonically
increasing in 'lover the whole domain 'I ~ O. In particular. it is sometimes found that
«).-(,/./I. rx) is monotonically increasing over a linite domain () ~ '1 < 'lon•• ::; 'Ton•• (fl. IX) but is
subsequently monotonically decreasing to )." (fl. et) for 'I > '/0".' (fl. et). Pairs (fl. rx) which give
rise to this behavior will be said to belong to the set r~. For example. we find that (2.0.
0.5) En. in which case 'lind< =: 1.977 ...•lnd A, = 3.439 ... (Fig. 5).

A-

... ,.. U

"or If_

...
"Fig. 5. The functions I1I f (". P.:l) and 111.(". p.:l) for (p.:l) = (2.0. 0.5). Here (fl. 1%) err, n r~ with

AT ~ 3.439. " .... ~ 1.911 and 'IT ~ 1.392.
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CompOSllC ~onligurations for which (fl,:x) E r~ give rise to flexure failure thrusts that
no Iong..:r ob":J (64). To d..:tc:rmine the ordering in sUl.:h a case we note for (fl, :d E r;, that
the eLjuation

(70)

\\ ill ha \ e a lIniLjlle finite root. which we shall denote by '1r(fl, :x), and that this root will obey

For example, rel~rring to Fig. 5, we note that '1r(2.0. 0.5) = 1.391 ... < 1.977.,. = '1ma\ (2.0.
0.5). Recalling that the discrete values of the sequence of values of 11 is determined by 1~/ll'

it follows that. for a gi\"Cn aspect ratio l~/ll' one can then determine integers p. q such that

prel~!211 < 111' ~ (p+ I)relz/2/1,

qnl~J211 ~ 11",... < (q + I )nl~J2/1' (71)

It is dear that (l ~ I' ~ If.

If JI > () it follows that 1t/~/'2/1 < '1 I' so that T~ is the critical flexure failure thrust. In
this ..:v..:nt w..: may ddine til..: l1exure failure thrust sequenl.:es

17'1' TF1
·.it = t I."" pi ..

IT' 1"'1t I' ~ I" ~ . ... 1.1 i ..

•J \ ~ 1T,~:, I •.. , -+ T t :"

(provided p < q)

The ordering of the flexure failure thrusts will now consist of .J I followed by an interl~tcing

of ,) ~ wi th a rewrse orderi ng of the sequenl.:e .J \.

On the other hand if I' =:: 0, then rel1/2/1 ~ '11'. Assume for the moment that the
inequality is '..rri-:t. It then follows that '1', is the critical l1exure failure thrust. In this event
til\: sequence " b cmpty and thc ordering of the flexure failure thrusts will consist of an
interlacing of,,: with thc rcycrse ordering of the sequence h. It is to be emphasized in this
interlacing that 1', will in this case lead the sequence of flexure failure thrusts.

In both ca':>c..... [J = 0 and [J > 0 the thrust '1', is not an upper bound for the set of values
T,'". ReGll1 now that hoth the Ilexure l~lilure thrusts and the barrelling failure thrusts cluster
around '1', . lienee it may he conduded that some of the barrelling failure thrusts will be
interbccd with ':>,)me of the flexure failure thrusts,

lIms. it (fl. xl E r~" the I!exllre fililure thrusts are illteriacetlll'ith the harrelling lailure
t!lrusts reqartll,'.1'S or aspect ratio I~/l" The critil'lll jlexlire failure thrust will. dependillg Oil

t!le II.Il'e('{ ratio I.: 'I" he dther the m =:: I jlexlIre jitillire or the m ,x; II'rillk ling faillire. The
tramitio/1 /wtll'('1'1I the III =:: I Jlexure jililltre ami the m = if) wrinkling failure occurs at the
trallsitioll aspen ratio I: II =:: 1tfr/1t. At tlll:\' trallsition aspect ratio TI' = T~. Helice for (J

r;; plate ll'hiclt is sulficiclltly short in tile directioll of thrust [specifically II < 1~1t/(1'1 r)J,
II'rillklil/.tI is tile eritical.flcxlIral instability. flowc/'er.jf)r a r;;' plate which is sltjJiciellt~1' 1011.'1
ill the directioll or thrust [sflaijical(r I, > IJn:/(21/dJ, the critical jh'xltral ins{(Jhility is the
//I = I //lode,

It is to be noted for ({I.::<) E r~:. that there exist infinitely many aspect ratios at which
a Ile\un: failurc thrust from .l~ will coincide with a Ilexure failure thrust from .)\. To sec
this choose;' in the interval L, < ;. < (1)1-' (11m.". P. ~). There will exist two intersections of
the hori/.olHal line corresponding to this value of i. with the graph of $F('1.{I, '1.). One
intersection will occur in /1,. < 11 < 'I",." and the other will occur in 'I > 11m.... Denote these
interscction valllcs of 1/ by 1/1 and liz. respectively. The ratio 11zl"1 can be made to take on
any value greater than I by appropriately choosing i. in this procedure. If this ratio is a
r,ltional numoer it then follows that Il~J"1 =:: rls for infinitely many integer pairs rand s.
Choosc Ol1e sw:h integer pair, for example the case when rand s are coprime. Then the
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aspect ratio /://1 = 2'1t/(s1t) = 2'1:/(nt) will yield T; = T;. Moreover. this construction will
hold for each rational number greater than 1. We note that there is no possibility that a
single flexure failure thrust could correspond to three or more flexure failure modes m
whenever (fl. :x) E f~.

The regions r~ and r~ in the semi-infinite strip

(72)

of possible (p.:x) parameter pairs have been determined by means ofan extensive numerical
sampling procedure and are displayed in Fig. 6. Points to the right (left) of the vertical line
segment p= 1correspond to cases in which the central ply is composed of a material which
is more (less) stiff than the material comprising the outer plies. Points above (below) the
horizontal line :x = 1/2 correspond to cases in which the central ply comprises more (less)
than half the construction. A conspicuous feature of Fig. 6 is the presence of a region r;,',
corresponding to pairs (p.:x) which belong to neither f~ nor r~. The meaning of this region
will be discussed below. [n Fig. 6 the points (p. 0) E r;. (p. I) E r~ and (I.:x) E f~ by virtue
of (53). However we find that pairs (P,:x) very close to these values may in f.tct not belong
to f;. For example. we find that (0.5,0.99) En and (1.1.0.5) E f~. The "threading" of the
segmcnt Ii = I through the "pass" created by regions r;, and f;" ncar (fi.:x) = (1.0. 0.9) is
displayed in Fig. 7. The region boundaries in Figs 6 and 7 may shift as morc relined
numerical algorithms arc developed.

The presence of f;, so near the boundary :x = I for 0 < Ii < I indicates that if the
.tspcct ratio /://, is sullieiently large then the addition of relatively thin and stilT outer layers
can suppress the low wavelength flexure modes enough to lead to the dominance of the
In co wrinkling instability. Since eaeh pair (p.:x) E f~; gives rise to an aspect ratio depen­
dcnce upon the criticaillexural instability. we display the value 01'" r(fi, :x), which determines
the transition aspect ratio. for representative pairs (fi. ex) E r;, in Table 1.

We now turn to consider the buckling behavior of composite constructions cor·
responding to parameter p.tirs (fl, IX) E r:;,. Each such pair (fi.:x) givcs rise to a function
(ll"('1./I.:Xl which contains both internal maxima and internal minima as f] varies from 0 to
"1'•• The ordering of the llexure l~tilure thrusts for composite configurations in which (fI.:x) E

1":;, may in l~tct be ljuite complicated. First of all it is to be noted that (64) might still hold.
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Fig. 6. Flc:\ure failure behavior as represented in the semi-infinite strip 0 < :x "" Rill < l.
o< fl = /1"",'/1'''. The region types for each shade arc as displayed. The two PQints shown corresPQnd
10 thc parameter {'<tirs as.sociatcd with Figs 4 and 5. Although it is not always obvious from this

diagram. the parameter pairs obeying (53) arc in the region r~·.
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Fig. 7. Magnified viC'w of Fig. (, ncar (/1. ct) = (1.0.0.9). The points on fJ = I arc ensured to lie on
r~ by virtue of (5Jl.

Sr~l'ilically. if th~ numh~r of internal m'lxima is linit~ and ~qual to the numb~r of int~rnal

minima. th~n the asymptotic value ;., will he approached from below and consequently
(M) will continue to hold for sullidently large aspect ratios I~!II' However. for each (/I.:t) E

r:;, it is also clear that then: will exist certain aspect ratios such that (64) will not hold. In
particular. for each (//. :t) E r:;, there will exist infinitely many aspect ratios such that certain
flexure bilure thrusts will correspond to two distinct flexure modes 111 by the same argument
used for (/I.:t) E I':;. Finally. th~ possibility of a single !1exure failure thrust corresponding
to three or 11l0n: fkxur~ mod~s 111 r~mains a possibility when~v~r (/I.:t) E r~;,.

W~ now turn to consider the barrelling failure thrusts. The ord~ring (65) of barrelling
failur~ thrusts will continu~ to hold if (I>II(I/./I.:t) is monotonically d~cr~asing in 1/ for all
1/ ~ O. Pairs (/1. Ci) which give rise to (1111 (//./1.1) having this property will be said to belong
to the set r~'. For example. (2.0.0.5) E r~1 (Fig. 5).

On the other hand if tlllI(I/./I. 1) is found to be monotonically decreasing ov~r an
interval 0::::;; 1/ < ,/",,,, = I/ III",(/I.:t) and is subsequently monotonically increasing for
1/ > '/,11,11(/1.1). th~n we shall say that (/I. Ci) E r,~. For example. (0.5.0.5) E r,~ (Fig. 4). Finally.

Taok I. Value (11'",(/1.1). whidl determines the transition aSf'<.'\:t ratio. for representatl\,: pair~ (/1.1) E
[',',. F(lr I, I, < 211,1[. the critical instaoility is the'" = I lle.,ure mode. while for 1,,1, > 2'Ir I[ the .:nti.:al

instaoility is the m = ~. wrinl"lIlg mode

6=0.1 0.2 0.5 0.8 0.9 1.0 1.1 I.5 2 2.5 3 4 6=5

ex=1 / / / / / / / / / / / / /
.99 0.974 1.236 1.948 2.810 3.602 / / / / / / / /
.95 0.593 0.780 I.l47 1.692 2.125 / / / / / / / /
.9 0.555 0.711 1.070 1.653 2.166 / / / / / / / /
.8 / / / / / / 2.264 1.841 1.858 2.102 2.274 2.798 /
.7 / / / / / / 1.862 1.383 1.410 1.439 1.599 1.726 1.912
.6 / / / / / / 1.818 1.333 1.349 1.395 1.554 1.698 1.877

.5 / / / / / / 1.951 1.347 1.392 1.497 1.675 1.965 2.147

.4 / / / / / / 2.410 1.483 1.546 1.729 1.962 2.322 2.616

.3 / / / / / / 3.186 1.764 1.889 2.196 2.536 3.060 3.865

.2 / / / / / / 4.753 2.465 2.711 3.228 3.829 4.784 5.826

.1 / / / / / / / 4.857 5.065 5.903 6.898 / /
ex=O / / / / / / / / / / / / /
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if (p.:x) belongs to n~ither r~ nor r~ then we shall say that (p.:x) E r~" Clearly (P.:x) E r~j

implies that <1>8('1. p.:x) has an internal maximum.
For (p.:x) E r~. relation (65) will no longer hold. Specifically. T 1; can no longer be the

critical barrelling failure thrust. In fact. the critical barrelling failure thrust can be made to
correspond to any mode number m < x by. for example. taking an aspect ratio
/~//I == 2'1m,n(P.:x) (mrr). Coincidence of two failure barrelling thrusts is also a possibility
whenever (p. :x) E r~. In fact for consecutive integers m and m + I. if T~ == T: ... t then this
common value of barrelling failure thrust must of necessity be the critical barrelling failure
thrust. Moreover. it can be shown that there exists a unique aspect ratio such that
T: = T: ... ,for any integer m. Finally. it is to be noted that interlacing of the flexural and
barrelling buckling loads win occur regardless of aspect ratio /~;/, if (p.:x) E r~.

If (p.:x) E r~" then the ordering of the barrelling failure thrusts is complicated by the
precise placement of the internal maxima and minima of <1>8('1. p. :x). In fact. phenomena
paralleling the possibilities outlined previously for r;" pertain also to r~,.

The partitioning of n into regions r~. r~ and r~, is displayed in Fig. 8. Note that the
boundary of the region r~ is at certain points quite dose to the pairs (/i. x) corresponding
to the noncomposite cnse (53). The presence of r~ so ncar the boundary x = I for fJ > I
indicates that n plate which includes relntively thin and flexible outer byers can be "tuned"
to any dcsired critical barrelling mode by appropriately selecting the aspect ratio /~l/I' For
such a result to be of significant practical interest. however. it would seem that it would be
necess,try to devise a method to suppress the preceding flexure modes.

Since the interlacing of the Ilexural and barrelling failure modes is an intriguing result.
il would be useful to further characterize this behavior with respect to #. :x and /~I/I' For a
given pair (//. :d. interlacing can be made to occur for at least one /~/'I if for any value of
1/ either (1)1.(//. li.:x) > i., or (1)11(/1. li.:x) < i. ,. Furthermore interlacing is ensured for .111/1//,

if either <I)dl/./i.l) approaches i" from above as 1/ -+ IX; or if (1),,(1/.11, x) approaches A.,
from below as '1 -x'. One or the other such asymptotic behaviors giving rise to interlacing
!l,lr alii~III will occur if either (fi. ':l) E r~; or (fi. x) E r~:. In addition. an asymptotic behavior
that ensures interlacing could .lIso occur if (fl. ':l) E r::, v r::,; however. for such points this
asymptotic behavior may be extremely sensitive to sm..t11 changes in (/1. x) and hence dilliculL
to determine. Even so. it is interesting to note from Figs 6 and 8 that points (fI.:x) E

I':, v I':: comprise the major portion of the strip n for both II > 1 and II < 1. Thus. from
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Fig. 8. Barrelling failure heh~lvior as represented in the semi-intimtc strip 0 < :x "" R:l~ < I.
0< It = 11,n. fl'''. The region types for each shade are as displayed. The two points shown correspond
to the parameter pairs assoclilted with Figs 4 and S. Although it is not always obvious from this

di<lgram. the parameter pairs obeying (53) are in the region r~.
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this point of view. interlacing is not at all unusual both when the stiffer material comprises
the outer layers (fJ < L e.g. Fig. .f). and when the stiffer material comprises the central ply
(/J> L e.g. Fig. 5).

It is also interesting to classify the points (P.:x) with respect to satisfaction ofeqns (6.f)

and (65). There are three possibilities. First. it may be that both (64) and (65)-and thus
(I)-hold for all aspect ratios ': 'I' In this case we shall say that ({J.:X)E=-!. For this to
occur the pair (13.:x) must belong to hoth r; and r~. Second. it may be that there is at least
one aspect ratio 1:/, that will result in both (64) and (65) being violated. For this to occur
the pair (p.:x) must belong to neither r; nor f~. In this case we shall say that (fl.:x) E 2.:.
Finally. it may be that for each aspect ratio 1://1 either (64) or (65) holds. but that there is
also at least one aspect ratio /:// 1 for which one of these relations is violated. This will occur
for the remaining case in which <p.:x) belongs to either r;' or r~. hut not hoth. In this case
we shall say that (fl.:x) E 2..1• Summarizing then these definitions.

2., = r; n r~.

=-: = (f;, v r;,,) n (r~ v r~,).

2. 1 = (r; n (f~ v r~,» v (r~ n (f~ v r;,,). (73)

One can determine thl:se regions on the basis of Figs 6 and 8. the result of which is given
in Fig. 9. This ligure indicates that 2. 1 is confined to a simply connt:cted region containing
pairs (fl. :x) corresponding to the noncomposite case (53). Thus. in this sense. tiu' composite
CO/l.wrllctions /ill1ler consideration must he "c/ose" to a mlflcomposite cOllstruction If" (I) I:\" /(I

hold. Figurl: l) also indicates that the region 2.\ comprises the majority of the semi·inliniw
strip II. In particular. thl: (fI.:x) pairs (0.5. 0.5) and (2.0,0.5), associated with Figs 4 and 5
n;spl:ctivdy. arc each a ntl:mher of =-\. The region 2.~. on the other hand. comprises the
least area within the.: semi-infinite strip n. For pairs (fI, :x) E 2." both (1)1' ('1. II. :x) and (lJn(/1, II. ~)
display nonnHlllOtone heha vior as. for exam pic. shown in Fig. 10 for the.: point <II. 2) :; (0.5.
(un. hnally. il is to be noted from Fig. 9 that the.: (fl.:x) c1assitication is far more.: se.:nsilive
nl:ar:x == I than il is ncar :x :; O. This confirms our intuilion as to the elli:ct thaI placeme.:nt
of Ihin "stilli:ncrs" (or even "Ioosencrs") would have in a much thicker homogeneous plate;

1.0

0.8

0.6 ::3

ex

0.•

0.2

0.0
0.0 1.0 2.0 3.0

II
Fig. 9. The p'lrtilloning of the semi-infinite strip 0 < :r = Rei, < 1.0 < II .= 11'"'111'" into the regions
E,. E, and E,. The ordering (I) is ensured only for (p.:r)eE,. For (p.:t)eE,vE, the ordering
which n:placcs (I) is dependent on the aspect ratio 1:/1,. Although it is not always obvious from

this diagram. the parameter pairs obeying (53) arc in the region E,.
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Fig. 10. The function 1II~(t/,II,x) and <I>H(t/./I,X) for (/I,xl = (1l.5. H.K). lien: WXlE r~: n r~". A
mallimutn "f the functIOn <I>~ (t/,II. x) occurs at (t/. A) = PI ~ (1.')Z5. Z.H.'IIl) ami a minimum "I' the
function occurs at (t/. ;.) '" /': ~ (:!.llll. Z.O:!I). ,\ single minimum in the function'!>n(././I. ex) occurs

at (t/.,lj = P, :::: (3.1')7. 2.().tI).

namely th:.tt the :.tddition of thin plies on the external X! faces of the plate would h:.tvc :.t
more pronounced elfect on the buckling bch:.tvior th:.tn would the insertion of a single
double thickness ply on the pl:.tte·s midplane. Thus it is found that burying a very thin ply
at the center of .t plate will mask its clfect upon altering the order of Ihe failure thrusts.
More general issues related to the modilic<ltion of buckling behavior by means of ply
placement arc currently under investigation.
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APPENDIX

Submatrices J_ in (51):

[

2ACz

-AS.
J" '" .o

o

-2;.Sz Ae.
AC: -2S,

o 0

o 0

-AS'12C,
o .
o
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0 0 0 0

0 0 0 0
J" =

2i.C, 2i.S, /\C T /\5,

/\S, /\C, 25, 2C,

r-
c

'

5, -C, 5, 1
J" =

i.S, -i.C 5,
~2 .

-~;~'
2i.S, -/\C,

-/\C 2SJ -2C,

[ C.

-5, C, -SJ

J" =
-i.S, i.C -5., C,

2pi.C, - 21Ii.S, P/\C, -11/\5,

-P/\S, P/\C -2PS, 2PC,

[ -C,
-S, -c,

-5'1-i.S, -i.C, -s, -c,
J" =

-Zpi.C -Zpi.S, -{I/\C, -II/\S, .

-P/\S, -II/\C -2pS, -211C,

[ C.

S. C,
S, ji.S. i.C, S.. C,

J II =
2i.S. /\C. /\S, .2;'C.

/\S. /\C 2.'1, 2C,

where

c, = cosh ('tl. C, = cosh (,I'll. C I = cosh ('rx). C, = cosh (A'I7).

S, = sinh ('ll. S, = sinh (i.,O. S, = sinh ('17). S. = sinh (i.'/7).

/\=(;'+I/i.).


